
Prescribed Generative Adversarial Networks

Adji B. Dieng1, Francisco J. R. Ruiz2, 3,
David M. Blei1, 2, and Michalis K. Titsias4

1Department of Statistics, Columbia University
2Department of Computer Science, Columbia University

3Department of Engineering, University of Cambridge
4DeepMind

October 9, 2019

Abstract

Generative adversarial networks (GANs) are a powerful approach to unsuper-
vised learning. They have achieved state-of-the-art performance in the image
domain. However, GANs are limited in two ways. They often learn distributions
with low support—a phenomenon known as mode collapse—and they do not
guarantee the existence of a probability density, which makes evaluating gener-
alization using predictive log-likelihood impossible. In this paper, we develop
the prescribed GAN (PresGAN) to address these shortcomings. PresGANs add
noise to the output of a density network and optimize an entropy-regularized
adversarial loss. The added noise renders tractable approximations of the
predictive log-likelihood and stabilizes the training procedure. The entropy
regularizer encourages PresGANs to capture all the modes of the data dis-
tribution. Fitting PresGANs involves computing the intractable gradients of
the entropy regularization term; PresGANs sidestep this intractability using
unbiased stochastic estimates. We evaluate PresGANs on several datasets and
found they mitigate mode collapse and generate samples with high perceptual
quality. We further found that PresGANs reduce the gap in performance in
terms of predictive log-likelihood between traditional GANs and variational
auto-encoders (VAEs).1

Keywords: generative adversarial networks, entropy regularization, log-likelihood
evaluation, mode collapse, diverse image generation, deep generative models

1 Introduction

Generative adversarial networks (GANs) (Goodfellow et al., 2014) are a family of
generative models that have shown great promise. They achieve state-of-the-art
performance in the image domain; for example image generation (Karras et al.,
2019; Brock et al., 2018), image super-resolution (Ledig et al., 2017), and image
translation (Isola et al., 2017).

1Code: The code for this paper can be found at https://github.com/adjidieng/PresGANs.

1

https://github.com/adjidieng/PresGANs


Figure 1: Density estimation with GAN and PresGAN on a toy two-dimensional
experiment. The ground truth is a uniform mixture of 10 Gaussians organized
on a ring. Given the right set of hyperparameters, a GAN could perfectly fit this
target distribution. In this example we chose the GAN hyperparameters such that it
collapses—here 4 out of 10 modes are missing. We then fit the PresGAN using the
same hyperparameters as the collapsing GAN. The PresGAN is able to correct the
collapsing behavior of the GAN and learns a good fit for the target distribution.

GANs learn densities by defining a sampling procedure. A latent variable z is sampled
from a prior p(z) and a sample x̃(z;θ ) is generated by taking the output of a neural
network with parameters θ , called a generator, that takes z as input. The density
pθ (x) implied by this sampling procedure is implicit and undefined (Mohamed
and Lakshminarayanan, 2016). However, GANs effectively learn the parameters θ
by introducing a classifier Dφ—a deep neural network with parameters φ, called
discriminator—that distinguishes between generated samples x̃(z;θ ) and real data
x, with distribution pd(x). The parameters θ and φ are learned jointly by optimizing
the GAN objective,

LGAN(θ ,φ) = Ex∼pd (x)
�

log Dφ(x)
�

+Ez∼p(z)
�

log
�

1− Dφ(x̃(z;θ ))
��

. (1)

GANs iteratively maximize the loss in Eq. 1 with respect to φ and minimize it with
respect to θ .

In practice, the minimax procedure described above is stopped when the generator
produces realistic images. This is problematic because high perceptual quality does
not necessarily correlate with goodness of fit to the target density. For example,
memorizing the training data is a trivial solution to achieving high perceptual quality.
Fortunately, GANs do not merely memorize the training data (Zhang et al., 2017;
Arora et al., 2017).

However GANs are able to produce images indistinguishable from real images while
still failing to fully capture the target distribution (Brock et al., 2018; Karras et al.,
2019). Indeed GANs suffer from an issue known as mode collapse. When mode
collapse happens, the generative distribution pθ (x) is degenerate and of low sup-
port (Arora et al., 2017, 2018). Mode collapse causes GANs, as density estimators,
to fail both qualitatively and quantitatively. Qualitatively, mode collapse causes lack
of diversity in the generated samples. This is problematic for certain applications
of GANs, e.g. data augmentation. Quantitatively, mode collapse causes poor gen-
eralization to new data. This is because when mode collapse happens, there is a

2



(support) mismatch between the learned distribution pθ (x) and the data distribu-
tion. Using annealed importance sampling with a kernel density estimate of the
likelihood, Wu et al. (2016) report significantly worse log-likelihood scores for GANs
when compared to variational auto-encoders (VAEs). Similarly poor generalization
performance was reported by Grover et al. (2018).

A natural way to prevent mode collapse in GANs is to maximize the entropy of the
generator (Belghazi et al., 2018). Unfortunately the entropy of GANs is unavailable.
This is because the existence of the generative density pθ (x) is not guaranteed
(Mohamed and Lakshminarayanan, 2016; Arjovsky et al., 2017).

In this paper, we propose a method to alleviate mode collapse in GANs resulting
in a new family of GANs called prescribed GANs (PresGANs). PresGANs prevent
mode collapse by explicitly maximizing the entropy of the generator. This is done
by augmenting the loss in Eq. 1 with the negative entropy of the generator, such
that minimizing Eq. 1 with respect to θ corresponds to fitting the data while also
maximizing the entropy of the generative distribution. The existence of the gen-
erative density is guaranteed by adding noise to the output of a density network
(MacKay, 1995; Diggle and Gratton, 1984). This process defines the generative
distribution pθ (x), not as an implicit distribution as in standard GANs, but as an
infinite mixture of well-defined densities as in continuous VAEs (Kingma and Welling,
2013; Rezende et al., 2014). The generative distribution of PresGANs is therefore
very flexible.

Although the entropy of the generative distribution of PresGANs is well-defined,
it is intractable. However, fitting a PresGAN to data only involves computing the
gradients of the entropy and not the entropy itself. PresGANs use unbiased Monte
Carlo estimates of these gradients.

An illustrative example. To demonstrate how PresGANs alleviate mode collapse,
we form a target distribution by organizing a uniform mixture of K = 10 two-
dimensional Gaussians on a ring. We draw 5,000 samples from this target distribu-
tion. We first fit a GAN, setting the hyperparameters so that the GAN suffers from
mode collapse2. We then use the same settings for PresGAN to assess whether it can
correct the collapsing behavior of the GAN. Figure 1 shows the collapsing behavior
of the GAN, which misses 4 modes of the target distribution. The PresGAN, on the
other hand, recovers all the modes. Section 5 provides details about the settings of
this synthetic experiment.

Contributions. This paper contributes to the literature on the two main open
problems in the study of GANs: preventing mode collapse and evaluating log-
likelihood.

• How can we perform entropy regularization of the generator of a GAN so as to
effectively prevent mode collapse? We achieve this by adding noise to the output
of the generator; this ensures the existence of a density pθ (x) and makes its
entropy well-defined. We then regularize the GAN loss to encourage densities
pθ (x) with high entropy. During training, we form unbiased estimators of the
(intractable) gradients of the entropy regularizer. We show how this prevents

2A GAN can perfectly fit this distribution when choosing the right hyperparameters.

3



mode collapse, as expected, in two sets of experiments (see Section 5). The
first experiment follows the current standard for measuring mode collapse in the
GAN literature, which is to report the number of modes recovered by the GAN on
MNIST (10 modes) and STACKEDMNIST (1,000 modes) and the Kullback-Leibler
(KL) divergence between the true label distribution and the one induced by the
GAN. We conducted a second experiment which sheds light on another way mode
collapse can occur in GANs, which is when the data is imbalanced.

• How can we measure log-likelihood in GANs? Evaluating log-likelihood for GANs
allows assessing how they generalize to new data. Existing measures focus on
sample quality, which is not a measure of generalization. This inability to measure
predictive log-likelihood for GANs has restricted their use to domains where one
can use perceptual quality measures (e.g., the image domain). Existing methods
for evaluating log-likelihood for GANs either use a proxy to log-likelihood (Sánchez-
Martín et al., 2019) or define the likelihood of the generator only at test time,
which creates a mismatch between training and testing (Wu et al., 2016), or
assume invertibility of the generator of the GAN (Grover et al., 2018). Adding
noise to the output of the generator immediately makes tractable predictive
log-likelihood evaluation via importance sampling.

Outline. The rest of the paper is organized as follows. In Section 2 we set the
notation and provide desiderata for deep generative modeling. In Section 3 we
describe PresGANs and how we compute their predictive log-likelihood to assess
generalization. In Section 4 we discuss related work. We then assess the performance
of PresGANs in terms of mode collapse, sample quality, and log-likelihood in Section 5.
Finally, we conclude and discuss key findings in Section 6.

2 Prologue

In this paper, we characterize a deep generative model (DGM) by its generative
process and by the loss used to fit its parameters. We denote by pθ (x) the generative
distribution induced by the generative process—it is parameterized by a deep neural
network with parameters θ . The loss, that we denote by L (θ ,φ), often requires
an additional set of parameters φ that help learn the model parameters θ . We
next describe choices for pθ (x) and L (θ ,φ) and then specify desiderata for deep
generative modeling.

The generative distribution. Recent DGMs define the generative distribution either
as an implicit distribution or as an infinite mixture (Goodfellow et al., 2014; Kingma
and Welling, 2013; Rezende et al., 2014).

Implicit generative models define a density using a sampling procedure. This is the
approach of GANs (Goodfellow et al., 2014). A latent variable z is sampled from
a prior p(z), usually a standard Gaussian or a uniform distributon, and a sample
is generated by taking the output of a neural network that takes z as input. The
density pθ (x) implied by this sampling procedure is undefined. Any measure that
relies on an analytic form of the density pθ (x) is therefore unavailable; e.g., the
log-likelihood or the entropy.

4



An alternative way to define the generative distribution is by using the approach of
VAEs (Kingma and Welling, 2013; Rezende et al., 2014). They define pθ (x) as an
infinite mixture,

pθ (x) =

∫

pθ (x |z) p(z) dz. (2)

Here the mixing distribution is the prior p(z). The conditional distribution pθ (x |z) is
an exponential family distribution, such as a Gaussian or a Bernoulli, parameterized
by a neural network with parameters θ . Although both the prior p(z) and pθ (x |z)
are simple tractable distributions, the generative distribution pθ (x) is highly flexible
albeit intractable. Because pθ (x) in Eq. 2 is well-defined, the log-likelihood and the
entropy are also well-defined (although they may be analytically intractable).

The loss function. Fitting the models defined above requires defining a learning
procedure by specifying a loss function. GANs introduce a classifier Dφ, a deep
neural network parameterized by φ, to discriminate between samples from the data
distribution pd(x) and the generative distribution pθ (x). The auxiliary parameters
φ are learned jointly with the model parameters θ by optimizing the loss in Eq. 1.
This training procedure leads to high sample quality but often suffers from mode
collapse (Arora et al., 2017, 2018).

An alternative approach to learning θ is via maximum likelihood. This requires a
well-defined density pθ (x) such as the one in Eq. 2. Although well-defined, pθ (x) is
intractable, making it difficult to learn the parameters θ by maximum likelihood.
VAEs instead introduce a recognition network—a neural network with parameters
φ that takes data x as input and outputs a distribution over the latent variables
z—and maximize a lower bound on log pθ (x) with respect to both θ and φ,

LVAE(θ ,φ) = Epd (x)Eqφ(z |x)

�

log
pθ (x,z)
qφ(z |x)

�

= −KL(qφ(z |x)pd(x)||pθ (x,z)). (3)

Here KL(·||·) denotes the KL divergence. Maximizing LVAE(θ ,φ) is equivalent to
minimizing this KL which leads to issues such as latent variable collapse (Bowman
et al., 2015; Dieng et al., 2018b). Furthermore, optimizing Eq. 3 may lead to
blurriness in the generated samples because of a property of the reverse KL known
as zero-forcing (Minka et al., 2005).

Desiderata. We now outline three desiderata for DGMs.

High sample quality. A DGM whose parameters θ have been fitted using real data
should generate new data with the same qualitative precision as the data it was
trained with. For example, if a DGM is trained on a dataset composed of human
faces, it should generate data with all features that make up a face at the same
resolution as the training data.

High sample diversity. High sample quality alone is not enough. For example, a
degenerate DGM that is only able to produce one single sample is not desirable,
even if the sample quality is perfect. Therefore we require sample diversity; a DGM

should ideally capture all modes of the data distribution.

Tractable predictive log-likelihood. DGMs are density estimators and as such we should
evaluate how they generalize to new data. High sample quality and diversity are not

5



measures of generalization. We therefore require tractable predictive log-likelihood
as a desideratum for deep generative modeling.

We next introduce a new family of GANs that fulfills all the desiderata.

3 Prescribed Generative Adversarial Networks

PresGANs generate data following the generative distribution in Eq. 2. Note that
this generative process is the same as for standard VAEs (Kingma and Welling, 2013;
Rezende et al., 2014). In particular, PresGANs set the prior p(z) and the likelihood
pθ (x |z) to be Gaussians,

p(z) =N (z |0, I) and pθ (x |z) =N (x |µθ (z),Σθ (z)) . (4)

The mean µθ (z) and covariance Σθ (z) of the conditional pθ (x |z) are given by a
neural network that takes z as input.

In general, both the mean µθ (z) and the covariance Σθ (z) can be functions of z.
For simplicity, in order to speed up the learning procedure, we set the covariance
matrix to be diagonal with elements independent from z, i.e., Σθ (z) = diag

�

σ2
�

,
and we learn the vector σ together with θ . From now on, we parameterize the
mean with η, write µη(z), and define θ = (η,σ) as the parameters of the generative
distribution.

To fit the model parameters θ , PresGANs optimize an adversarial loss similarly to
GANs. In doing so, they keep GANs’ ability to generate samples with high perceptual
quality. Unlike GANs, the entropy of the generative distribution of PresGANs is
well-defined, and therefore PresGANs can prevent mode collapse by adding an
entropy regularizer to Eq. 1. Furthermore, because PresGANs define a density over
their generated samples, we can measure how they generalize to new data using
predictive log-likelihood. We describe the entropy regularization in Section 3.1 and
how to approximate the predictive log-likelihood in Section 3.3.

3.1 Avoiding mode collapse via entropy regularization

One of the major issues that GANs face is mode collapse, where the generator tends
to model only some parts or modes of the data distribution (Arora et al., 2017,
2018). PresGANs mitigate this problem by explicitly maximizing the entropy of the
generative distribution,

LPresGAN(θ ,φ) =LGAN(θ ,φ)−λH (pθ (x)) . (5)

HereH (pθ (x)) denotes the entropy of the generative distribution. It is defined as

H (pθ (x)) = −Epθ (x) [log pθ (x)] . (6)

The loss LGAN(θ ,φ) in Eq. 5 can be that of any of the existing GAN variants. In
Section 5 we explore the standard deep convolutional generative adversarial network

6



Algorithm 1: Learning with Prescribed Generative Adversarial Networks (PresGANs)

input : Data x, entropy regularization level λ
Initialize parameters η,σ,φ
for iteration t = 1, 2, . . . do

Draw minibatch of observations x1, . . . ,xb, . . . ,xB
for b = 1, 2, . . . , B do

Get noised data: εb ∼N (0, I) and bxb = xb +σ � εb
Draw latent variable zb ∼N (0, I)
Generate data: sb ∼N (0, I) and x̃b = x̃b(zb, sb;θ ) = µη(zb) +σ � sb

end
Compute ∇φLPresGAN(θ ,φ) (Eq. 16) and take a gradient step for φ
Initialize an HMC sampler using zb

Draw z̃(m)b ∼ pθ (z | x̃b) for m= 1, . . . , M and b = 1, . . . , B using that sampler
Compute Ò∇ηLPresGAN((η,σ),φ) (Eq. 14) and take a gradient step for η
Compute Ò∇σLPresGAN((η,σ),φ) (Eq. 15) and take a gradient step for σ
Truncate σ in the range [σlow,σhigh]

end

(DCGAN) (Radford et al., 2015) and the more recent StyleGAN (Karras et al., 2019)
architectures.

The constant λ in Eq. 5 is a hyperparameter that controls the strength of the
entropy regularization. In the extreme case when λ = 0, the loss function of
PresGAN coincides with the loss of a GAN, where we replaced its implicit generative
distribution with the infinite mixture in Eq. 2. In the other extreme when λ=∞,
optimizingLPresGAN(θ ,φ) corresponds to fitting a maximum entropy generator that
ignores the data. For any intermediate values of λ, the first term of LPresGAN(θ ,φ)
encourages the generator to fit the data distribution, whereas the second term
encourages to cover all of the modes of the data distribution.

The entropyH (pθ (x)) is intractable because the integral in Eq. 6 cannot be com-
puted. However, fitting the parameters θ of PresGANs only requires the gradients of
the entropy. In Section 3.2 we describe how to form unbiased Monte Carlo estimates
of these gradients.

3.2 Fitting Prescribed Generative Adversarial Networks

We fit PresGANs following the same adversarial procedure used in GANs. That is, we
alternate between updating the parameters of the generative distribution θ and the
parameters of the discriminator φ. The full procedure is given in Algorithm 1. We
now describe each part in detail.

Fitting the generator. We fit the generator using stochastic gradient descent. This
requires computing the gradients of the PresGAN loss with respect to θ ,

∇θLPresGAN(θ ,φ) =∇θLGAN(θ ,φ)−λ∇θH (pθ (x)) . (7)

7



We form stochastic estimates of∇θLGAN(θ ,φ) based on reparameterization (Kingma
and Welling, 2013; Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2014); this
requires differentiating Eq. 1. Specifically, we introduce a noise variable ε to repa-
rameterize the conditional from Eq. 4,3

x(z,ε;θ ) = µη(z) +σ � ε, (8)

where θ = (η,σ) and ε∼N (0, I). Here µη(z) andσ denote the mean and standard
deviation of the conditional pθ (x |z), respectively. We now write the first term of
Eq. 7 as an expectation with respect to the latent variable z and the noise variable ε
and push the gradient into the expectation,

∇θLGAN(θ ,φ) = Ep(z)p(ε)
�

∇θ log
�

1− Dφ(x(z,ε;θ ))
��

. (9)

In practice we use an estimate of Eq. 9 using one sample from p(z) and one sample
from p(ε),

Ò∇θLGAN(θ ,φ) =∇θ log
�

1− Dφ(x(z,ε;θ ))
�

. (10)

The second term in Eq. 7, corresponding to the gradient of the entropy, is intractable.
We estimate it using the same approach as Titsias and Ruiz (2018). We first use the
reparameterization in Eq. 8 to express the gradient of the entropy as an expecta-
tion,

∇θH (pθ (x)) = −∇θEpθ (x) [log pθ (x)] = −∇θEp(ε)p(z)

�

log pθ (x)
�

�

x=x(z,ε;θ )

�

= −Ep(ε)p(z)

�

∇θ log pθ (x)
�

�

x=x(z,ε;θ )

�

= −Ep(ε)p(z)

�

∇x log pθ (x)
�

�

x=x(z,ε;θ )∇θx(z,ε;θ )
�

,

where we have used the score function identity Epθ (x) [∇θ log pθ (x)] = 0 on the
second line. We form a one-sample estimator of the gradient of the entropy as

Ò∇θH (pθ (x)) = −∇xlog pθ (x)
�

�

x=x(z,ε;θ ) ×∇θx(z,ε;θ ). (11)

In Eq. 11, the gradient with respect to the reparameterization transformation
∇θx(z,ε;θ ) is tractable and can be obtained via back-propagation. We now derive
∇x log pθ (x),

∇x log pθ (x) =
∇xpθ (x)

pθ (x)
=

∫

∇xpθ (x,z)dz

pθ (x)
=

∫ ∇xpθ (x |z)
pθ (x |z)

pθ (x,z)

pθ (x)
dz

=

∫

∇x log pθ (x |z)pθ (z |x)dz= Epθ (z |x) [∇x log pθ (x |z)] .

While this expression is still intractable, we can estimate it. One way is to use self-
normalized importance sampling with a proposal learned using moment matching

3With this reparameterization we use the notation x(z,ε;θ ) instead of x̃(z;θ ) to denote a sample
from the generative distribution.

8



with an encoder (Dieng and Paisley, 2019). However, this would lead to a biased (al-
beit asymptotically unbiased) estimate of the entropy. In this paper, we form an unbi-
ased estimate of ∇x log pθ (x) using samples z(1), . . . ,z(M) from the posterior,

Ò∇x log pθ (x) =
1
M

M
∑

m=1

∇x log pθ (x |z(m)), z(m) ∼ pθ (z |x). (12)

We obtain these samples using Hamiltonian Monte Carlo (HMC) (Neal et al., 2011).
Crucially, in order to speed up the algorithm, we initialize the HMC sampler at
stationarity. That is, we initialize the HMC sampler with the sample z that was used
to produce the generated sample x(z,ε;θ) in Eq. 8, which by construction is an
exact sample from pθ (z |x). This implies that only a few HMC iterations suffice to
get good estimates of the gradient (Titsias and Ruiz, 2018). We also found this
holds empirically; for example in Section 5 we use 2 burn-in iterations and M = 2
HMC samples to form the Monte Carlo estimate in Eq. 12.

Finally, using Eqs. 7 and 10 to 12 we can approximate the gradient of the entropy-
regularized adversarial loss with respect to the model parameters θ ,

Ò∇θLPresGAN(θ ,φ) =∇θ log
�

1− Dφ(x(z,ε;θ ))
�

+
λ

M

M
∑

m=1

∇x log pθ (x |z(m))
�

�

x=x(z(m),ε;θ ) ×∇θx
�

z(m),ε;θ
�

. (13)

In particular, the gradient with respect to the generator’s parameters η is unbiasedly
approximated by

Ò∇ηLPresGAN(θ ,φ) =∇η log
�

1− Dφ(x(z,ε;θ ))
�

−
λ

M

M
∑

m=1

x(z(m),ε;θ )−µη
�

z(m)
�

σ2
∇ηµη(z(m)), (14)

and the gradient estimator with respect to the standard deviation σ is

Ò∇σLPresGAN(θ ,φ) =∇σ log
�

1− Dφ(x(z,ε;θ ))
�

−
λ

M

M
∑

m=1

x(z(m),ε;θ )−µη
�

z(m)
�

σ2
· ε. (15)

These gradients are used in a stochastic optimization algorithm to fit the generative
distribution of PresGAN.

Fitting the discriminator. Since the entropy term in Eq. 5 does not depend
on φ, optimizing the discriminator of a PresGAN is analogous to optimizing the
discriminator of a GAN,

∇φLPresGAN(θ ,φ) =∇φLGAN(θ ,φ). (16)

To prevent the discriminator from getting stuck in a bad local optimum where it
can perfectly distinguish between real and generated data by relying on the added
noise, we apply the same amount of noise to the real data x as the noise added to

9



the generated data. That is, when we train the discriminator we corrupt the real
data according to

bx= x+σ � ε, (17)

where σ is the standard deviation of the generative distribution and x denotes the
real data. We then let the discriminator distinguish between bx and x(z,ε;θ) from
Eq. 8.

This data noising procedure is a form of instance noise (Sønderby et al., 2016).
However, instead of using a fixed annealing schedule for the noise variance as
Sønderby et al. (2016), we let σ be part of the parameters of the generative
distribution and fit it using gradient descent according to Eq. 15.

Stability. Data noising stabilizes the training procedure and prevents the discrimi-
nator from perfectly being able to distinguish between real and generated samples
using the background noise. We refer the reader to Huszár (2016) for a detailed
exposition.

When fitting PresGANs, data noising is not enough to stabilize training. This is
because there are two failure cases brought in by learning the variance σ2 using
gradient descent. The first failure mode is when the variance gets very large, leading
to a generator completely able to fool the discriminator. Because of data noising,
the discriminator cannot distinguish between real and generated samples when the
variance of the noise is large.

The second failure mode is when σ2 gets very small, which makes the gradient
of the entropy in Eq. 14 dominate the overall gradient of the generator. This is
problematic because the learning signal from the discriminator is lost.

To stabilize training and avoid the two failure cases discussed above we truncate the
variance of the generative distribution, σlow ≤ σ ≤ σhigh (we apply this truncation
element-wise). The limits σlow and σhigh are hyperparameters.

3.3 Enabling tractable predictive log-likelihood approximation

Replacing the implicit generative distribution of GANs with the infinite mixture
distribution defined in Eq. 2 has the advantage that the predictive log-likelihood
can be tractably approximated. Consider an unseen datapoint x∗. We estimate its
log marginal likelihood log pθ (x∗) using importance sampling,

log pθ (x
∗)≈ log

�

1
S

S
∑

s=1

pθ
�

x∗ |z(s)
�

· p
�

z(s)
�

r
�

z(s) |x∗
�

�

, (18)

where we draw S samples z(1), . . . ,z(S) from a proposal distribution r(z |x∗).

There are different ways to form a good proposal r(z |x∗), and we discuss several
alternatives in Section 7.1 of the appendix. In this paper, we take the following
approach. We define the proposal as a Gaussian distribution,

r(z |x∗) =N (µr ,Σr). (19)

10



We set the mean parameter µr to the maximum a posteriori solution, i.e., µr =
argmaxz (log pθ (x∗ |z) + log p (z)). We initialize this maximization algorithm using
the mean of a pre-fitted encoder, qγ(z |x∗). The encoder is fitted by minimizing the
reverse KL divergence between qγ(z |x) and the true posterior pθ (z |x) using the
training data. This KL is

KL
�

qγ(z |x)||pθ (z |x)
�

= log pθ (x)−Eqγ(z |x)
�

log pθ (x |z)p(z)− log qγ(z |x)
�

.

(20)

Because the generative distribution is fixed at test time, minimizing the KL here is
equivalent to maximizing the second term in Eq. 20, which is the evidence lower
bound (ELBO) objective of VAEs.

We set the proposal covariance Σr as an overdispersed version4 of the encoder’s
covariance matrix, which is diagonal. In particular, to obtain Σr we multiply
the elements of the encoder’s covariance by a factor γ. In Section 5 we set γ
to 1.2.

4 Related Work

GANs (Goodfellow et al., 2014) have been extended in multiple ways, using alterna-
tive distance metrics and optimization methods (see, e.g., Li et al., 2015; Dziugaite
et al., 2015; Nowozin et al., 2016; Arjovsky et al., 2017; Ravuri et al., 2018; Genevay
et al., 2017) or using ideas from VAEs (Makhzani et al., 2015; Mescheder et al.,
2017; Dumoulin et al., 2016; Donahue et al., 2016; Tolstikhin et al., 2017; Ulyanov
et al., 2018; Rosca et al., 2017).

Other extensions aim at improving the sample diversity of GANs. For example,
Srivastava et al. (2017) use a reconstructor network that reverses the action of the
generator. Lin et al. (2018) use multiple observations (either real or generated) as
an input to the discriminator to prevent mode collapse. Azadi et al. (2018) and
Turner et al. (2018) use sampling mechanisms to correct errors of the generative
distribution. Xiao et al. (2018) relies on identifying the geometric structure of
the data embodied under a specific distance metric. Other works have combined
adversarial learning with maximum likelihood (Grover et al., 2018; Yin and Zhou,
2019); however, the low sample quality induced by maximum likelihood still occurs.
Finally, Cao et al. (2018) introduce a regularizer for the discriminator to encourage
diverse activation patterns in the discriminator across different samples. In contrast
to these works, PresGANs regularize the entropy of the generator to prevent mode
collapse.

The idea of entropy regularization has been widely applied in many problems
that involve estimation of unknown probability distributions. Examples include
approximate Bayesian inference, where the variational objective contains an entropy
penalty (Jordan, 1998; Bishop, 2006; Wainwright et al., 2008; Blei et al., 2017);
reinforcement learning, where the entropy regularization allows to estimate more
uncertain and explorative policies (Schulman et al., 2015; Mnih et al., 2016);

4In general, overdispersed proposals lead to better importance sampling estimates.

11



statistical learning, where entropy regularization allows an inferred probability
distribution to avoid collapsing to a deterministic solution (Freund and Schapire,
1997; Soofi, 2000; Jaynes, 2003); or optimal transport (Rigollet and Weed, 2018).
More recently, Kumar et al. (2019) have developed maximum-entropy generators
for energy-based models using mutual information as a proxy for entropy.

Another body of related work is about how to quantitatively evaluate GANs. Inception
scores measure the sample quality of GANs and are used extensively in the GAN

literature (Salimans et al., 2016; Heusel et al., 2017; Bińkowski et al., 2018).
However, sample quality measures only assess the quality of GANs as data generators
and not as density estimators. Density estimators are evaluated for generalization
to new data. Predictive log-likelihood is a measure of goodness of fit that has
been used to assess generalization; for example in VAEs. Finding ways to evaluate
predictive log-likelihood for GANs has been an open problem, because GANs do not
define a density on the generated samples. Wu et al. (2016) use a kernel density
estimate (Parzen, 1962) and estimate the log-likelihood with annealed importance
sampling (Neal, 2001). Balaji et al. (2018) show that an optimal transport GAN

with entropy regularization can be viewed as a generative model that maximizes a
variational lower bound on average sample likelihoods, which relates to the approach
of VAEs (Kingma and Welling, 2013). Sánchez-Martín et al. (2019) propose EvalGAN,
a method to estimate the likelihood. Given an observation x?, EvalGAN first finds
the closest observation ex that the GAN is able to generate, and then it estimates
the likelihood p(x?) by approximating the proportion of samples z ∼ p(z) that
lead to samples x that are close to ex. EvalGAN requires selecting an appropriate
distance metric for each problem and evaluates GANs trained with the usual implicit
generative distribution. Finally, Grover et al. (2018) assume invertibility of the
generator to make log-likelihood tractable.

5 Empirical Study

Here we demonstrate PresGANs’ ability to prevent mode collapse and generate
high-quality samples. We also evaluate its predictive performance as measured by
log-likelihood.

5.1 An Illustrative Example

In this section, we fit a GAN to a toy synthetic dataset of 10 modes. We choose the
hyperparameters such that the GAN collapses. We then apply these same hyperparam-
eters to fit a PresGAN on the same synthetic dataset. This experiment demonstrates
the PresGAN’s ability to correct the mode collapse problem of a GAN.

We form the target distribution by organizing a uniform mixture of K = 10 two-
dimensional Gaussians on a ring. The radius of the ring is r = 3 and each Gaussian
has standard deviation 0.05. We then slice the circle into K parts. The location of
the centers of the mixture components are determined as follows. Consider the kth

12



mixture component. Its coordinates in the 2D space are

centerx = r · cos
�

k ·
2π
K

�

and centery = r · sin
�

k ·
2π
K

�

.

We draw 5,000 samples from the target distribution and fit a GAN and a PresGAN.

We set the dimension of the latent variables z used as the input to the generators to
10. We let both the generators and the discriminators have three fully connected
layers with tanh activations and 128 hidden units in each layer. We set the minibatch
size to 100 and use Adam for optimization (Kingma and Ba, 2014), with a learning
rate of 10−3 and 10−4 for the discriminator and the generator respectively. The
Adam hyperparameters are β1 = 0.5 and β2 = 0.999. We take one step to optimize
the generator for each step of the discriminator. We pick a random minibatch at
each iteration and run both the GAN and the PresGAN for 500 epochs.

For PresGAN we set the burn-in and the number of HMC samples to 2. We choose
a standard number of 5 leapfrog steps and set the HMC learning rate to 0.02. The
acceptance rate is fixed at 0.67. The log-variance of the noise of the generative
distribution of PresGAN is initialized at 0.0. We put a threshold on the variance
to a minimum value of σlow = 10−2 and a maximum value of σhigh = 0.3. The
regularization parameter λ is 0.1. We fit the log-variance using Adam with a learning
rate of 10−4.

Figure 1 demonstrates how the PresGAN alleviates mode collapse. The distribution
learned by the regular GAN misses 4 modes of the target distribution. The PresGAN

is able to recover all the modes of the target distribution.

5.2 Assessing mode collapse

In this section we evaluate PresGANs’ ability to mitigate mode collapse on real
datasets. We run two sets of experiments. In the first set of experiments we adopt
the current experimental protocol for assessing mode collapse in the GAN literature.
That is, we use the MNIST and STACKEDMNIST datasets, for which we know the
true number of modes, and report two metrics: the number of modes recovered
by the PresGAN and the KL divergence between the label distribution induced by
the PresGAN and the true label distribution. In the second set of experiments we
demonstrate that mode collapse can happen in GANs even when the number of
modes is as low as 10 but the data is imbalanced.

Increased number of modes. We consider the MNIST and STACKEDMNIST datasets.
MNIST is a dataset of hand-written digits,5 in which each 28× 28× 1 image corre-
sponds to a digit. There are 60,000 training digits and 10,000 digits in the test set.
MNIST has 10 modes, one for each digit. STACKEDMNIST is formed by concatenating
triplets of randomly chosen MNIST digits along the color channel to form images
of size 28 × 28 × 3 (Metz et al., 2017). We keep the same size as the original
MNIST, 60,000 training digits for 10,000 test digits. The total number of modes in
STACKEDMNIST is 1,000, corresponding to the number of possible triplets.

5See http://yann.lecun.com/exdb/mnist.

13

http://yann.lecun.com/exdb/mnist


Table 1: Assessing mode collapse on MNIST. The true total number of modes is
10. All methods capture all the 10 modes. The KL captures a notion of discrepancy
between the labels of real versus generated images. PresGAN generates images
whose distribution of labels is closer to the data distribution, as evidenced by lower
KL scores.

Method Modes KL
DCGAN (Radford et al., 2015) 10± 0.0 0.902± 0.036

VEEGAN (Srivastava et al., 2017) 10± 0.0 0.523± 0.008
PACGAN (Lin et al., 2018) 10± 0.0 0.441± 0.009

PresGAN (this paper) 10± 0.0 0.003± 0.001

Table 2: Assessing mode collapse on STACKEDMNIST. The true total number of
modes is 1,000. All methods suffer from collapse except PresGAN, which captures
nearly all the modes of the data distribution. Furthermore, PresGAN generates
images whose distribution of labels is closer to the data distribution, as evidenced
by lower KL scores.

Method Modes KL
DCGAN (Radford et al., 2015) 392.0± 7.376 8.012± 0.056

VEEGAN (Srivastava et al., 2017) 761.8± 5.741 2.173± 0.045
PACGAN (Lin et al., 2018) 992.0± 1.673 0.277± 0.005

PresGAN (this paper) 999.6± 0.489 0.115± 0.007

We consider DCGAN as the base architecture and, following Radford et al. (2015),
we resize the spatial resolution of images to 64× 64 pixels.

To measure the degree of mode collapse we form two diversity metrics, following
Srivastava et al. (2017). Both of these metrics require to fit a classifier to the training
data. Once the classifier has been fit, we sample S images from the generator. The
first diversity metric is the number of modes captured, measured by the number of
classes that are captured by the classifier. We say that a class k has been captured if
there is at least one generated sample for which the probability of being assigned to
class k is the largest. The second diversity metric is the KL divergence between two
discrete distributions: the empirical average of the (soft) output of the classifier on
generated images, and the empirical average of the (soft) output of the classifier
on real images from the test set. We choose the number of generated images S to
match the number of test samples on each dataset. That is, S = 10,000 for both
MNIST and STACKEDMNIST. We expect the KL divergence to be zero if the distribution
of the generated samples is indistinguishable from that of the test samples.

We measure the two mode collapse metrics described above against DCGAN (Radford
et al., 2015) (the base architecture of PresGAN for this experiment). We also compare
against other methods that aim at alleviating mode collapse in GANs, namely, VEEGAN

(Srivastava et al., 2017) and PACGAN (Lin et al., 2018). For PresGAN we set the
entropy regularization parameter λ to 0.01. We chose the variance thresholds to be
σlow = 0.001 and σhigh = 0.3.

Tables 1 and 2 show the number of captured modes and the KL for each method.

14



Table 3: Assessing the impact of the entropy regularization parameter λ on mode
collapse on MNIST and STACKEDMNIST. When λ= 0 (i.e., no entropy regularization
is applied to the generator), then mode collapse occurs as expected. When entropy
regularization is applied but the value of λ is very small (λ = 10−6) then mode
collapse can still occur as the level of regularization is not enough. When the value
of λ is appropriate for the data then mode collapse does not occur. Finally, when λ
is too high then mode collapse can occur because the entropy maximization term
dominates and the data is poorly fit.

MNIST STACKEDMNIST

λ Modes KL Modes KL
0 10± 0.0 0.050± 0.0035 418.2± 7.68 4.151± 0.0296

10−6 10± 0.0 0.005± 0.0008 989.8± 1.72 0.239± 0.0059
10−2 10± 0.0 0.003± 0.0006 999.6± 0.49 0.115± 0.0074

5× 10−2 10± 0.0 0.004± 0.0008 999.4± 0.49 0.099± 0.0047
10−1 10± 0.0 0.005± 0.0004 999.4± 0.80 0.102± 0.0032

5× 10−1 10± 0.0 0.006± 0.0011 907.0± 9.27 0.831± 0.0209

0 2 4 6 8
Increased Imbalance 

3

4

5

6

7

8

9

10

Nu
m

be
r o

f M
od

es
 c

ap
tu

re
d

0 2 4 6 8
Increased Imbalance 

0

2

4

6

8

10

12
Ku

llb
ac

k 
Le

ib
le

r D
iv

er
ge

nc
e

DCGAN
VEEGAN
PACGAN
PresGAN

Figure 2: Assessing mode collapse under increased data imbalance on MNIST. The
figures show the number of modes captured (higher is better) and the KL divergence
(lower is better) under increasingly imbalanced settings. The maximum number
of modes in each case is 10. All methods suffer from mode collapse as the level of
imbalance increases except for the PresGAN which is robust to data imbalance.

The results are averaged across 5 runs. All methods capture all the modes of MNIST.
This is not the case on STACKEDMNIST, where the PresGAN is the only method that
can capture all the modes. Finally, the proportion of observations in each mode
of PresGAN is closer to the true proportion in the data, as evidenced by lower KL

divergence scores.

We also study the impact of the entropy regularization by varying the hyperparameter
λ from 0 to 0.5. Table 3 illustrates the results. Unsurprisingly, when there is no
entropy regularization, i.e., when λ = 0, then mode collapse occurs. This is also the
case when the level of regularization is not enough (λ= 10−6). There is a whole
range of values for λ such that mode collapse does not occur (λ ∈ {0.01, 0.05, 0.1}).
Finally, when λ is too high for the data and architecture under study, mode collapse
can still occur. This is because when λ is too high, the entropy regularization term
dominates the loss in Eq. 5 and in turn the generator does not fit the data as well.

15



This is also evidenced by the higher KL divergence score when λ = 0.5 vs. when
0< λ < 0.5.

Increased data imbalance. We now show that mode collapse can occur in GANs
when the data is imbalanced, even when the number of modes of the data distri-
bution is small. We follow Dieng et al. (2018a) and consider a perfectly balanced
version of MNIST as well as nine imbalanced versions. To construct the balanced
dataset we used 5,000 training examples per class, totaling 50,000 training exam-
ples. We refer to this original balanced dataset as D0. Each additional training set
Dk leaves only 5 training examples for each class j ≤ k, and 5,000 for the rest. (See
the Appendix for all the class distributions.)

We used the same classifier trained on the unmodified MNIST but fit each method
on each of the 9 new MNIST distributions. We chose λ= 0.1 for PresGAN. Figure 2
illustrates the results in terms of both metrics—number of modes and KL divergence.
DCGAN, VEEGAN, and PACGAN face mode collapse as the level of imbalance increases.
This is not the case for PresGAN, which is robust to imbalance and captures all the
10 modes.

5.3 Assessing sample quality

In this section we assess PresGANs’ ability to generate samples of high perceptual
quality. We rely on perceptual quality of generated samples and on Fréchet Inception
distance (FID) scores (Heusel et al., 2017). We also consider two different GAN

architectures, the standard DCGAN and the more recent StyleGAN, to show robustness
of PresGANs vis-a-vis the underlying GAN architecture.

DCGAN. We use DCGAN (Radford et al., 2015) as the base architecture and build
PresGAN on top of it. We consider four datasets: MNIST, STACKEDMNIST, CIFAR-
10, and CelebA. CIFAR-10 (Krizhevsky et al., 2009) is a well-studied dataset of
32× 32 images that are classified into one of the following categories: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck. CelebA (Liu et al.,
2015) is a large-scale face attributes dataset. Following Radford et al. (2015),
we resize all images to 64 × 64 pixels. We use the default DCGAN settings. We
refer the reader to the code we used for DCGAN, which was taken from https:
//github.com/pytorch/examples/tree/master/dcgan. We set the seed to 2019
for reproducibility.

There are hyperparameters specific to PresGAN. These are the noise and HMC

hyperparameters. We set the learning rate for the noise parameters σ to 10−3 and
constrain its values to be between 10−3 and 0.3 for all datasets. We initialize logσ
to −0.5. We set the burn-in and the number of HMC samples to 2. We choose a
standard number of 5 leapfrog steps and set the HMC learning rate to 0.02. The
acceptance rate is fixed at 0.67. We found that different λ values worked better
for different datasets. We used λ= 5× 10−4 for CIFAR-10 and CELEBA λ= 0.01 for
MNIST and STACKEDMNIST.

We found the PresGAN’s performance to be robust to the default settings for most of
these hyperparameters. However we found the initialization for σ and its learning

16

https://github.com/pytorch/examples/tree/master/dcgan
https://github.com/pytorch/examples/tree/master/dcgan


Table 4: Fréchet Inception distance (FID) (lower is better). PresGAN has lower FID

scores than DCGAN, VEEGAN, and PACGAN. This is because PresGAN mitigates mode
collapse while preserving sample quality.

Method Dataset FID

DCGAN (Radford et al., 2015) MNIST 113.129± 0.490
VEEGAN (Srivastava et al., 2017) MNIST 68.749± 0.428

PACGAN (Lin et al., 2018) MNIST 58.535± 0.135
PresGAN (this paper) MNIST 42.019± 0.244

DCGAN STACKEDMNIST 97.788± 0.199
VEEGAN STACKEDMNIST 86.689± 0.194
PACGAN STACKEDMNIST 117.128± 0.172
PresGAN STACKEDMNIST 23.965± 0.134
DCGAN CIFAR-10 103.049± 0.195
VEEGAN CIFAR-10 95.181± 0.416
PACGAN CIFAR-10 54.498± 0.337
PresGAN CIFAR-10 52.202± 0.124
DCGAN CELEBA 39.001± 0.243
VEEGAN CELEBA 46.188± 0.229
PACGAN CELEBA 36.058± 0.212
PresGAN CELEBA 29.115± 0.218

rate to play a role in the quality of the generated samples. The hyperparameters
mentioned above for σ worked well for all datasets.

Table 4 shows the FID scores for DCGAN and PresGAN across the four datasets. We
can conclude that PresGAN generates images of high visual quality. In addition, the
FID scores are lower because PresGAN explores more modes than DCGAN. Indeed,
when the generated images account for more modes, the FID sufficient statistics
(the mean and covariance of the Inception-v3 pool3 layer) of the generated data
get closer to the sufficient statistics of the empirical data distribution.

We also report the FID for VEEGAN and PACGAN in Table 4. VEEGAN achieves better
FID scores than DCGAN on all datasets but CELEBA. This is because VEEGAN collapses
less than DCGAN as evidenced by Table 1 and Table 2. PACGAN achieves better FID

scores than both DCGAN and VEEGAN on all datasets but on STACKEDMNIST where it
achieves a significantly worse FID score. Finally, PresGAN outperforms all of these
methods on the FID metric on all datasets signaling its ability to mitigate mode
collapse while preserving sample quality.

Besides the FID scores, we also assess the visual quality of the generated images.
In Section 7.3 of the appendix, we show randomly generated (not cherry-picked)
images from DCGAN, VEEGAN, PACGAN, and PresGAN. For PresGAN, we show the
mean of the conditional distribution of x given z. The samples generated by PresGAN

have high visual quality; in fact their quality is comparable to or better than the
DCGAN samples.

StyleGAN. We now consider a more recent GAN architecture (StyleGAN) (Karras
et al., 2019) and a higher resolution image dataset (FFHQ). FFHQ is a diverse dataset

17



Figure 3: Generated images on FFHQ for StyleGAN (left) and PresGAN (right). The
PresGAN maintains the high perceptual quality of the StyleGAN.

of faces from Flickr6 introduced by Karras et al. (2019). The dataset contains 70,000
high-quality PNG images with considerable variation in terms of age, ethnicity, and
image background. We use a resolution of 128× 128 pixels.

StyleGAN feeds multiple sources of noise z to the generator. In particular, it adds
Gaussian noise after each convolutional layer before evaluating the nonlinearity.
Building PresGAN on top of StyleGAN therefore requires to sample all noise variables
z through HMC at each training step. To speed up the training procedure, we only
sample the noise variables corresponding to the input latent code and condition on
all the other Gaussian noise variables. In addition, we do not follow the progressive
growing of the networks of Karras et al. (2019) for simplicity.

For this experiment, we choose the same HMC hyperparameters as for the previous
experiments but restrict the variance of the generative distribution to be σhigh = 0.2.
We set λ= 0.001 for this experiment.

Figure 3 shows cherry-picked images generated from StyleGAN and PresGAN. We
can observe that the PresGAN maintains as good perceptual quality as the base
architecture. In addition, we also observed that the StyleGAN tends to produce

6See https://github.com/NVlabs/ffhq-dataset.

18

https://github.com/NVlabs/ffhq-dataset


some redundant images (these are not shown in Figure 3), something that we did
not observe with the PresGAN. This lack of diversity was also reflected in the FID

scores which were 14.72± 0.09 for StyleGAN and 12.15± 0.09 for PresGAN. These
results suggest that entropy regularization effectively reduces mode collapse while
preserving sample quality.

5.4 Assessing held-out predictive log-likelihood

In this section we evaluate PresGANs for generalization using predictive log-likelihood.
We use the DCGAN architecture to build PresGAN and evaluate the log-likelihood on
two benchmark datasets, MNIST and CIFAR-10. We use images of size 32×32.

We compare the generalization performance of the PresGAN against the VAE (Kingma
and Welling, 2013; Rezende et al., 2014) by controlling for the architecture and
the evaluation procedure. In particular, we fit a VAE that has the same decoder
architecture as the PresGAN. We form the VAE encoder by using the same architecture
as the DCGAN discriminator and getting rid of the output layer. We used linear maps
to get the mean and the log-variance of the approximate posterior.

To measure how PresGANs compare to traditional GANs in terms of log-likelihood,
we also fit a PresGAN with λ= 0.

Evaluation. We control for the evaluation procedure and follow what’s described
in Section 3.3 for all methods. We use S = 2,000 samples to form the importance
sampling estimator. Since the pixel values are normalized in [−1,+1], we use a
truncated Gaussian likelihood for evaluation. Specifically, for each pixel of the test
image, we divide the Gaussian likelihood by the probability (under the generative
model) that the pixel is within the interval [−1,+1]. We use the truncated Gaussian
likelihood at test time only.

Settings. For the PresGAN, we use the same HMC hyperparameters as for the
previous experiments. We constrain the variance of the generative distribution using
σlow = 0.001 and σhigh = 0.2. We use the default DCGAN values for the remaining
hyperparameters, including the optimization settings. For the CIFAR-10 experiment,
we choose λ= 0.001. We set all learning rates to 0.0002. We set the dimension of
the latent variables to 100. We ran both the VAE and the PresGAN for a maximum of
200 epochs. For MNIST, we use the same settings as for CIFAR-10 but use λ = 0.0001
and ran all methods for a maximum of 50 epochs.

Results. Table 5 summarizes the results. Here GAN denotes the PresGAN fitted
using λ = 0. The VAE outperforms both the GAN and the PresGAN on both MNIST

and CIFAR-10. This is unsurprising given VAEs are fitted to maximize log-likelihood.
The GAN’s performance on CIFAR-10 is particularly bad, suggesting it suffered from
mode collapse. The PresGAN, which mitigates mode collapse achieves significantly
better performance than the GAN on CIFAR-10. To further analyze the generalization
performance, we also report the log-likelihood on the training set in Table 5. We
can observe that the difference between the training log-likelihood and the test
log-likelihood is very small for all methods.

19



Table 5: Generalization performance as measured by negative log-likelihood (lower
is better) on MNIST and CIFAR-10. Here the GAN denotes a PresGAN fitted without
entropy regularization (λ = 0). The PresGAN reduces the gap in performance
between the GAN and the VAE on both datasets.

MNIST CIFAR-10
Train Test Train Test

VAE −3483.94 −3408.16 −1978.91 −1665.84
GAN −1410.78 −1423.39 −572.25 −569.17

PresGAN −1418.91 −1432.50 −1050.16 −1031.70

6 Epilogue

We introduced the PresGAN, a variant of GANs that addresses two of their limitations.
PresGANs prevent mode collapse and are amenable to predictive log-likelihood
evaluation. PresGANs model data by adding noise to the output of a density network
and optimize an entropy-regularized adversarial loss. The added noise stabilizes
training, renders approximation of predictive log-likelihoods tractable, and enables
unbiased estimators for the gradients of the entropy of the generative distribution.
We evaluated PresGANs on several image datasets. We found they effectively prevent
mode collapse and generate samples of high perceptual quality. We further found
that PresGANs reduce the gap in performance between GANs and VAEs in terms of
predictive log-likelihood.

We found the level of entropy regularization λ plays an important role in mode
collapse. We leave as future work the task of finding the optimal λ. We now discuss
some insights that we concluded from our empirical study in Section 5.

Implicit distributions and sample quality. It’s been traditionally observed that
GANs generate samples with higher perceptual quality than VAEs. This can be
explained by looking at the two ways in which GANs and VAEs differ; the generative
distribution and the objective function. VAEs use prescribed generative distributions
and optimize likelihood whereas GANs use implicit generative distributions and
optimize an adversarial loss. Our results in Section 5 suggest that the implicit
generators of traditional GANs are not the key to high sample quality; rather, the key
is the adversarial loss. This is because PresGANs use the same prescribed generative
distributions as VAEs and achieve similar or sometimes better sample quality than
GANs.

Mode collapse, diversity, and imbalanced data. The current literature on mea-
suring mode collapse in GANs only focuses on showing that mode collapse happens
when the number of modes in the data distribution is high. Our results show that
mode collapse can happen not only when the number of modes of the data distri-
bution is high, but also when the data is imbalanced; even when the number of
modes is low. Imbalanced data are ubiquitous. Therefore, mitigating mode collapse
in GANs is important for the purpose of diverse data generation.

GANs and generalization. The main method to evaluate generalization for density
estimators is predictive log-likelihood. Our results agree with the current literature

20



that GANs don’t generalize as well as VAEs which are specifically trained to maximize
log-likelihood. However, our results show that entropy-regularized adversarial
learning can reduce the gap in generalization performance between GANs and
VAEs. Methods that regularize GANs with the maximum likelihood objective achieve
good generalization performance when compared to VAEs but they sacrifice sample
quality when doing so (Grover et al., 2018). In fact we also experienced this tension
between sample quality and high log-likelihood in practice.

Why is there such a gap in generalization, as measured by predictive log-likelihood,
between GANs and VAEs? In our empirical study in Section 5 we controlled for the
architecture and the evaluation procedure which left us to compare maximizing
likelihood against adversarial learning. Our results suggest mode collapse alone
does not explain the gap in generalization performance between GANs and VAEs.
Indeed Table 5 shows that even on MNIST, where mode collapse does not happen,
the VAE achieves significantly better log-likelihood than a GAN.

We looked more closely at the encoder fitted at test time to evaluate log-likelihood
for both the VAE and the GAN (not shown in this paper). We found that the encoder
implied by a fitted GAN is very underdispersed compared to the encoder implied
by a fitted VAE. Underdispersed proposals have a negative impact on importance
sampling estimates of log-likelihood. We tried to produce a more overdispersed
proposal using the procedure described in Section 3.3. However we leave as future
work learning overdispersed proposals for GANs for the purpose of log-likelihood
evaluation.

Acknowledgements

We thank Ian Goodfellow, Andriy Mnih, Aaron Van den Oord, and Laurent Dinh
for their comments. Francisco J. R. Ruiz is supported by the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No. 706760. Adji B. Dieng is supported by a Google PhD
Fellowship.

References

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial
networks. In International conference on machine learning, pages 214–223.

Arora, S., Ge, R., Liang, Y., Ma, T., and Zhang, Y. (2017). Generalization and
equilibrium in generative adversarial nets (GANs). In International Conference on
Machine Learning.

Arora, S., Risteski, A., and Zhang, Y. (2018). Do gans learn the distribution? some
theory and empirics.

Azadi, S., Olsson, C., Darrell, T., Goodfellow, I., and Odena, A. (2018). Discriminator
rejection sampling. arXiv preprint arXiv:1810.06758.

21



Balaji, Y., Hassani, H., Chellappa, R., and Feizi, S. (2018). Entropic GANs meet
VAEs: A statistical approach to compute sample likelihoods in gans. arXiv preprint
arXiv:1810.04147.

Belghazi, M. I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A., and
Hjelm, R. D. (2018). Mine: mutual information neural estimation. arXiv preprint
arXiv:1801.04062.

Bińkowski, M., Sutherland, D. J., Arbel, M., and Gretton, A. (2018). Demystifying
MMD GANs. arXiv:1801.01401.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A re-
view for statisticians. Journal of the American Statistical Association, 112(518):859–
877.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio, S.
(2015). Generating sentences from a continuous space. arXiv:1511.06349.

Brock, A., Donahue, J., and Simonyan, K. (2018). Large scale gan training for high
fidelity natural image synthesis. arXiv:1809.11096.

Cao, Y., Ding, G. W., Lui, K. Y.-C., and Huang, R. (2018). Improving gan train-
ing via binarized representation entropy (bre) regularization. arXiv preprint
arXiv:1805.03644.

Dieng, A. B., Cho, K., Blei, D. M., and LeCun, Y. (2018a). Learning with reflective
likelihoods.

Dieng, A. B., Kim, Y., Rush, A. M., and Blei, D. M. (2018b). Avoiding latent variable
collapse with generative skip models. arXiv:1807.04863.

Dieng, A. B. and Paisley, J. (2019). Reweighted expectation maximization. arXiv
preprint arXiv:1906.05850.

Diggle, P. J. and Gratton, R. J. (1984). Monte Carlo methods of inference for implicit
statistical models. Journal of the Royal Statistical Society: Series B (Methodological),
46(2):193–212.

Donahue, J., Krähenbühl, P., and Darrell, T. (2016). Adversarial feature learning.
arXiv preprint arXiv:1605.09782.

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky, M.,
and Courville, A. (2016). Adversarially learned inference. arXiv preprint
arXiv:1606.00704.

Dziugaite, G. K., Roy, D. M., and Ghahramani, Z. (2015). Training generative
neural networks via maximum mean discrepancy optimization. arXiv preprint
arXiv:1505.03906.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139.

22



Genevay, A., Peyré, G., and Cuturi, M. (2017). Learning generative models with
sinkhorn divergences. arXiv preprint arXiv:1706.00292.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680.

Grover, A., Dhar, M., and Ermon, S. (2018). Flow-gan: Combining maximum
likelihood and adversarial learning in generative models. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017).
GANs trained by a two time-scale update rule converge to a local Nash equilibrium.
In Advances in Neural Information Processing Systems.

Huszár, F. (2016). Instance noise: a trick for stabilising gan training. https:
//www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). Image-to-image translation
with conditional adversarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134.

Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge university
press.

Jordan, M. I. (1998). Learning in graphical models, volume 89. Springer Science &
Business Media.

Karras, T., Laine, S., and Aila, T. (2019). A style-based generator architecture for
generative adversarial networks. In Conference on Computer Vision and Pattern
Recognition.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
tiny images. Technical report, Citeseer.

Kumar, R., Goyal, A., Courville, A., and Bengio, Y. (2019). Maximum entropy
generators for energy-based models. arXiv preprint arXiv:1901.08508.

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., et al. (2017). Photo-realistic single image super-
resolution using a generative adversarial network. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4681–4690.

Li, Y., Swersky, K., and Zemel, R. (2015). Generative moment matching networks.
In International Conference on Machine Learning, pages 1718–1727.

Lin, Z., Khetan, A., Fanti, G., and Oh, S. (2018). Pacgan: The power of two samples
in generative adversarial networks. In Advances in Neural Information Processing
Systems, pages 1498–1507.

23

https://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/
https://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/


Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning face attributes in the
wild. In Proceedings of the IEEE international conference on computer vision, pages
3730–3738.

MacKay, D. J. (1995). Bayesian neural networks and density networks. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 354(1):73–80.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and Frey, B. (2015). Adversarial
autoencoders. arXiv preprint arXiv:1511.05644.

Mescheder, L., Nowozin, S., and Geiger, A. (2017). Adversarial variational bayes:
Unifying variational autoencoders and generative adversarial networks. In Pro-
ceedings of the 34th International Conference on Machine Learning-Volume 70, pages
2391–2400. JMLR. org.

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. (2017). Unrolled generative
adversarial networks. In International Conference on Learning Representations.

Minka, T. et al. (2005). Divergence measures and message passing. Technical report,
Technical report, Microsoft Research.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages 1928–1937.

Mohamed, S. and Lakshminarayanan, B. (2016). Learning in implicit generative
models. arXiv:1610.03483.

Neal, R. M. (2001). Annealed importance sampling. Statistics and computing,
11(2):125–139.

Neal, R. M. et al. (2011). Mcmc using hamiltonian dynamics. Handbook of markov
chain monte carlo, 2(11):2.

Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-gan: Training generative neu-
ral samplers using variational divergence minimization. In Advances in neural
information processing systems, pages 271–279.

Parzen, E. (1962). On estimation of a probability density function and mode. The
annals of mathematical statistics, 33(3):1065–1076.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learn-
ing with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434.

Ravuri, S., Mohamed, S., Rosca, M., and Vinyals, O. (2018). Learning im-
plicit generative models with the method of learned moments. arXiv preprint
arXiv:1806.11006.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation
and approximate inference in deep generative models. International Conference
on Machine Learning.

24



Rigollet, P. and Weed, J. (2018). Entropic optimal transport is maximum-likelihood
deconvolution. Comptes Rendus Mathématique, 356(11-12):1228–1235.

Rosca, M., Lakshminarayanan, B., Warde-Farley, D., and Mohamed, S. (2017).
Variational approaches for auto-encoding generative adversarial networks.
arXiv:1706.04987.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X.
(2016). Improved techniques for training GANs. In Advances in neural information
processing systems.

Sánchez-Martín, P., Olmos, P. M., and Pérez-Cruz, F. (2019). Out-of-sample testing
for gans. arXiv preprint arXiv:1901.09557.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region
policy optimization. In International conference on machine learning, pages 1889–
1897.

Sønderby, C. K., Caballero, J., Theis, L., Shi, W., and Huszár, F. (2016). Amortised
map inference for image super-resolution. arXiv preprint arXiv:1610.04490.

Soofi, E. S. (2000). Principal information theoretic approaches. Journal of the
American Statistical Association, 95(452):1349–1353.

Srivastava, A., Valkov, L., Russell, C., Gutmann, M. U., and Sutton, C. (2017).
Veegan: Reducing mode collapse in gans using implicit variational learning. In
Advances in Neural Information Processing Systems, pages 3308–3318.

Titsias, M. and Lázaro-Gredilla, M. (2014). Doubly stochastic variational bayes for
non-conjugate inference. In International conference on machine learning, pages
1971–1979.

Titsias, M. K. and Ruiz, F. J. (2018). Unbiased implicit variational inference. arXiv
preprint arXiv:1808.02078.

Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B. (2017). Wasserstein
auto-encoders. arXiv preprint arXiv:1711.01558.

Turner, R., Hung, J., Saatci, Y., and Yosinski, J. (2018). Metropolis-hastings genera-
tive adversarial networks. arXiv preprint arXiv:1811.11357.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2018). It takes (only) two: Adversarial
generator-encoder networks. In AAAI Conference on Artificial Intelligence.

Wainwright, M. J., Jordan, M. I., et al. (2008). Graphical models, exponential
families, and variational inference. Foundations and Trends R© in Machine Learning,
1(1–2):1–305.

Wu, Y., Burda, Y., Salakhutdinov, R., and Grosse, R. (2016). On the quantitative
analysis of decoder-based generative models. arXiv preprint arXiv:1611.04273.

Xiao, C., Zhong, P., and Zheng, C. (2018). BourGAN: Generative networks with
metric embeddings. In Advances in Neural Information Processing Systems.

Yin, M. and Zhou, M. (2019). Semi-implicit generative model. arXiv preprint
arXiv:1905.12659.

25



Zhang, P., Liu, Q., Zhou, D., Xu, T., and He, X. (2017). On the discrimination-
generalization tradeoff in gans. arXiv preprint arXiv:1711.02771.

Appendix

7.1 Other Ways to Compute Predictive Log-Likelihood

Here we discuss different ways to obtain a proposal in order to approximate the
predictive log-likelihood. For a test instance x∗, we estimate the marginal log-
likelihood log pθ (x∗) using importance sampling,

log pθ (x
∗)≈ log

�

1
S

S
∑

s=1

pθ
�

x∗ |z(s)
�

p
�

z(s)
�

r
�

z(s) |x∗
�

�

, (21)

where we draw the S samples z(1), . . . ,z(S) from a proposal distribution r(z |x∗). We
next discuss different ways to form the proposal r(z |x∗).

One way to obtain the proposal is to set r(z |x∗) as a Gaussian distribution whose
mean and variance are computed using samples from an HMC algorithm with
stationary distribution pθ (z |x∗)∝ pθ (x∗ |z)p(z). That is, the mean and variance
of r(z |x∗) are set to the empirical mean and variance of the HMC samples.

The procedure above requires to run an HMC sampler, and thus it may be slow. We
can accelerate the procedure with a better initialization of the HMC chain. Indeed,
the second way to evaluate the log-likelihood also requires the HMC sampler, but it
is initialized using a mapping z = gη(x?). The mapping gη(x?) is a network that
maps from observed space x to latent space z. The parameters η of the network
can be learned at test time using generated data. In particular, η can be obtained
by generating data from the fitted generator of PresGAN and then fitting gη(x?) to
map x to z by maximum likelihood. This is, we first sample M pairs (zm,xm)Mm=1
from the learned generative distribution and then we obtain η by minimizing
∑M

m=1 ||zm − gη(xm)||22. Once the mapping is fitted, we use it to initialize the HMC

chain.

A third way to obtain the proposal is to learn an encoder network qη(z |x) jointly
with the rest of the PresGAN parameters. This is effectively done by letting the
discriminator distinguish between pairs (x,z)∼ pd(x) · qη(z |x) and (x,z)∼ pθ (x,z)
rather than discriminate x against samples from the generative distribution. These
types of discriminator networks have been used to learn a richer latent space for
GAN (Donahue et al., 2016; Dumoulin et al., 2016). In such cases, we can use the
encoder network qη(z |x) to define the proposal, either by setting r(z |x∗) = qη(z |x∗)
or by initializing the HMC sampler at the encoder mean.

The use of an encoder network is appealing but it requires a discriminator that takes
pairs (x,z). The approach that we follow in the paper also uses an encoder network
but keeps the discriminator the same as for the base DCGAN. We found this approach
to work better in practice. More in detail, we use an encoder network qη(z |x);
however the encoder is fitted at test time by maximizing the variational ELBO, given

26



by
∑

nEqη(zn |xn)
�

log pθ (xn,zn)− log qη(zn |xn)
�

. We set the proposal r(z |x∗) =
qη(z |x∗). (Alternatively, the encoder can be used to initialize a sampler.)

7.2 Assessing mode collapse under increased data imbalance

In the main paper we show that mode collapse can happen not only when there are
increasing number of modes, as done in the GAN literature, but also when the data
is imbalanced. We consider a perfectly balanced version of MNIST by using 5,000
training examples per class, totalling 50,000 training examples. We refer to this
original balanced dataset as D1. We build nine additional training sets from this
balanced dataset. Each additional training set Dk leaves only 5 training examples
for each class j < k. See Table 6 for all the class distributions.

Table 6: Class distributions using the MNIST dataset. There are 10 class—one class
for each of the 10 digits in MNIST. The distribution D1 is uniform and the other
distributions correspond to different imbalance settings as given by the proportions
in the table. Note these proportions might not sum to one exactly because of
rounding.

Dist 0 1 2 3 4 5 6 7 8 9

D1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
D2 10−3 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
D3 10−3 10−3 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
D4 10−3 10−3 10−3 0.14 0.14 0.14 0.14 0.14 0.14 0.14
D5 10−3 10−3 10−3 10−3 0.17 0.17 0.17 0.17 0.17 0.17
D6 10−3 10−3 10−3 10−3 10−3 0.20 0.20 0.20 0.20 0.20
D7 10−3 10−3 10−3 10−3 10−3 10−3 0.25 0.25 0.25 0.25
D8 10−3 10−3 10−3 10−3 10−3 10−3 10−3 0.33 0.33 0.33
D9 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 0.49 0.49
D10 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 0.99

7.3 Sample quality

Here we show some sample images generated by DCGAN and PresGAN, together with
real images from each dataset. These images were not cherry-picked, we randomly
selected samples from all models. For PresGAN, we show the mean of the generator
distribution, conditioned on the latent variable z. In general, we observed the best
image quality is achieved by the entropy-regularized PresGAN.

27



(a) Real images.

(b) DCGAN Samples

(c) VEEGAN Samples

(d) PACGAN Samples

(e) PresGAN Samples

Figure 4: Real and generated images on CELEBA.

28


	Introduction
	Prologue
	Prescribed Generative Adversarial Networks
	Avoiding mode collapse via entropy regularization
	Fitting Prescribed Generative Adversarial Networks
	Enabling tractable predictive log-likelihood approximation

	Related Work
	Empirical Study
	An Illustrative Example
	Assessing mode collapse
	Assessing sample quality
	Assessing held-out predictive log-likelihood

	Epilogue
	Other Ways to Compute Predictive Log-Likelihood
	Assessing mode collapse under increased data imbalance
	Sample quality


