Augment and Reduce:

Stochastic Inference for Large Categorical Distributions

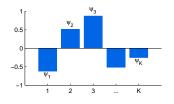
Adji Bousso Dieng

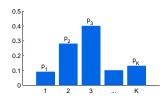
COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

Collaborators

- + Francisco J. R. Ruiz
- + Michalis Titsias
- + David M. Blei

Categorical Distributions: Applications

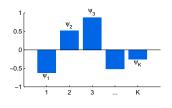


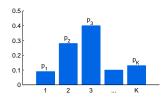


Categorical distributions are ubiquitous in Statistics and Machine Learning

- → discrete choice models
- ightarrow language models
- ightarrow recommendation systems
- → reinforcement learning

Categorical Distributions: Example Parameterization





ightarrow One widely applied parameterization of a categorical is the softmax,

$$p(y = k \mid \psi) = \operatorname{softmax}(\psi)|_k = \frac{e^{\psi_k}}{\sum_{k'} e^{\psi_{k'}}}$$

- \rightarrow Transforms reals into probabilities
- ightarrow Can be costly because of normalization ... $\mathcal{O}(K)$
- ightarrow A computational burden when learning with categorical distributions

A Closer Look at Softmax

→ Draw random standard Gumbel errors i.i.d.,

$$\varepsilon_k \sim \text{Gumbel}(\varepsilon \mid 0, 1)$$

 \rightarrow Define a *utility* for each outcome k,

$$\psi_{\mathbf{k}} + \varepsilon_{\mathbf{k}}$$

→ Choose the outcome with the largest utility,

$$y = \arg\max_{k} (\psi_k + \varepsilon_k)$$

ightarrow Integrate out the error terms $(\varepsilon_k$'s) to find the marginal $p(y \mid \psi)$

Softmax is the marginal!!

The Augmented Model

 \rightarrow The augmented model is

$$p(y = k, \varepsilon | \psi) = \phi(\varepsilon) \prod_{k' \neq k} \Phi(\varepsilon + \psi_k - \psi_{k'})$$

→ Nice property: The log-joint has a summation over the categories,

$$\log p(y = k, \varepsilon | \psi) = \log \phi(\varepsilon) + \sum_{k' \neq k} \log \Phi(\varepsilon + \psi_k - \psi_{k'})$$

- → This enables fast unbiased estimates,
 - − Sample a subset of outcomes $S \subseteq \{1, ..., K\} \setminus \{k\}$
 - Compute an estimate of the log-joint

$$\log \phi(\varepsilon) + \frac{K-1}{|\mathcal{S}|} \sum_{k' \in \mathcal{S}} \log \Phi(\varepsilon + \psi_k - \psi_{k'})$$

 \rightarrow This has $\mathcal{O}(|\mathcal{S}|)$ complexity

The Inference Algorithm: Variational EM

- ightarrow We are not interested in the log-joint, but in the log-marginal
- → Variational inference relates both quantities,

$$\log p(y \mid \psi) \ge \mathbb{E}_{q(\varepsilon)} \left[\log p(y, \varepsilon \mid \psi) - \log q(\varepsilon) \right]$$

- → Maximize the bound using variational EM
 - E step: Optimize w.r.t. the distribution $q(\varepsilon)$
 - M step: Take a gradient step w.r.t. ψ
- \rightarrow The complexity is controlled by the user (via |S|)

Things are Prettier with Softmax

ightarrow We can compute the optimal q(arepsilon) distribution,

$$q^{\star}(\varepsilon) = \operatorname{Gumbel}(\log \eta^{\star}, 1), \quad \eta^{\star} = 1 + \sum_{k' \neq k} e^{\psi_{k'} - \psi_k}$$

 \rightarrow This is $\mathcal{O}(K)$. Instead, set

$$q(\varepsilon) = \text{Gumbel}(\log \eta, 1)$$

 \rightarrow Estimate the optimal natural parameter in $\mathcal{O}(|\mathcal{S}|)$,

$$\widetilde{\eta} = 1 + \frac{K - 1}{|S|} \sum_{k' \in S} e^{\psi_{k'} - \psi_k}$$

(to update η , take a step in the direction of the natural gradient)

Scale All Categorical Distributions!

- ightarrow Choose other distributions for arepsilon to get other models,
 - Gaussian for multinomial probit
 - Logistic for multinomial logistic
- → Form Monte Carlo gradient estimators using reparameterization
- \rightarrow Useful for both E and M steps

Empirical Evidence

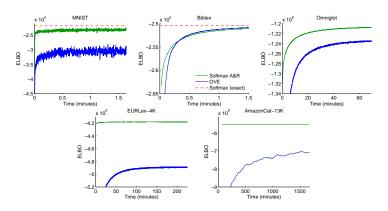
- → Baselines:
 - Exact Softmax for MNIST and Bibtex
 - OVE Also a lower bound but only applicable to softmax
- ightarrow Time complexity (top) and Predictive performance (bottom)

dataset	OVE (Titsias, 2016)	softmax	A&R [this pa multi. probit	per] multi. logistic
MNIST	0.336 s	0.337 s	0.431 s	0.511 s
Bibtex	0.181 s	0.188 s	0.244 s	0.246 s
Omniglot	4.47 s	4.65 s	5.63 s	5.57 s
EURLex-4K	5.54 s	5.65 s	6.46 s	6.23 s
AmazonCat-13K	2.80 h	2.80 h	2.82 h	2.91 h

dataset	exact log lik acc		softmax model OVE (Titsias, 2016) log lik acc		A&R [this paper]		multi. probit A&R [this paper] log lik acc		multi. logistic A&R [this paper] log lik acc	
MNIST Bibtex Omniglot EURLex-4K AmazonCat-13K	-0.261 -3.188 - -	0.927 0.361 - -	-0.276 -3.300 -5.667 - 4.241 -3.880	0.919 0.352 0.179 0.247 0.388	-0.271 -3.036 -5.171 -4.593 -3.795	0.924 0.361 0.201 0.207 0.420	-0.302 -4.184 -7.350 -4.193 -3.593	0.918 0.346 0.178 0.263 0.411	-0.287 -3.151 -5.395 -4.299 -4.081	0.917 0.353 0.184 0.226 0.350

Empirical Evidence

ightarrow Quality of the bound



Take Home: The A&R Recipe

- \rightarrow Choose a distribution for ε
- \rightarrow Augment your model with ε to get an augmented model—

$$\mathcal{L} = \log p(y = k, \varepsilon \mid \psi) = \log \phi(\varepsilon) + \sum_{k' \neq k} \log \Phi(\varepsilon + \psi_k - \psi_{k'})$$

 \rightarrow Reduce cost to $\mathcal{O}(|\mathcal{S}|)$ with an estimate of the log-joint,

$$\mathcal{L} pprox \tilde{\mathcal{L}} = \log \phi(\varepsilon) + \frac{K-1}{|\mathcal{S}|} \sum_{k' \in \mathcal{S}} \log \Phi(\varepsilon + \psi_k - \psi_{k'})$$

→ Use stochastic variational EM with the bound

$$\log p(y \mid \psi) \ge \mathbb{E}_{q(\varepsilon)} \left[\mathcal{L} - \log q(\varepsilon) \right]$$

A&R is a principled method that scales up training for models involving large categorical distributions using latent variable augmentation and stochastic variational inference.